Удобнее всего решать задачи на проценты в 6 классе с помощью пропорций. Для составления пропорции нет необходимости выяснять вид задачи на проценты. Нахождение числа по его процентам, процентов от числа и процентного отношения чисел в этом случае проходит по одинаковой схеме, что существенно упрощает решение.
Задачи на проценты относятся к задачам на прямую пропорциональную зависимость, но при составления условия стрелки обычно не рисуют. Условие оформляется максимально просто: в первом столбце — единицы измерения, во втором — проценты.
Рассмотрим примеры задач на проценты, решаемые с помощью пропорции.
1) Сколько килограммов соли содержится в 40 кг 3-процентного раствора?
Решение:
Пусть х кг соли содержится в растворе. Составляем пропорцию:
(Здесь пропорцию составили по строкам. Можно также составлять ее по столбцам, например, в направлении от большой величины — к меньшей: 40:х=100:3).
Значит, в растворе содержится 1,2 кг соли.
Ответ: 1,2 кг.
2) В саду растет 64 вишневых дерева, что составляет 16% всех деревьев. Сколько всего деревьев в саду?
Решение:
Пусть х деревьев всего в саду. Составляем пропорцию:
Значит, всего в саду 400 деревьев.
Ответ: 400 деревьев.
3) В книге 130 страниц. Саша прочитал 104 страницы. Сколько процентов книги прочитал Саша?
Решение:
Пусть х% книги составляют прочитанные страницы. Составим и решим пропорцию:
130 и 100 сокращаем на 10, затем 13 и 104 сокращаем на 13:
Значит, Саша прочитал 80% книги.
Ответ: 80%.
В некоторых случаях задачи на проценты можно легко решать устно. Как это делается, я расскажу позже.
Уважаемая Светлана Михайловна! Не поможете решить задачу? В составе винограда 80% воды.В изюме — 15% воды.Сколько кг винограда надо взять, чтобы получить 400 гр.изюма?
Елена, постараюсь напрячься и сегодня написать отдельный пост о решении задач такого вида. Меня уже спрашивали, но, увы, так и не ответила ещё.
Светлана Михайловна, можно за Вас?:)
В изюме и винограде количество мякоти одинаково, изменяется только количество воды.
Соответственно в изюме мякоти 85%, т.е. 400 * 0.85 = 340 гр. Эти же 340 гр. содержатся и винограде и составляют 100-80=20% от общей массы винограда. Поэтому 100% массы винограда = 340 * 5 = 1700 гр.
Конечно можно, Максим!
Всё верно. Только я предпочитаю оформлять как две отдельные простенькие задачи и составлять пропорцию, но это уже дело вкуса)